MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths

نویسندگان

  • Jorge Jovicich
  • Silvester Czanner
  • Xiao Han
  • David H. Salat
  • André J. W. van der Kouwe
  • Brian T. Quinn
  • Jennifer L. Pacheco
  • Marilyn S. Albert
  • Ronald J. Killiany
  • Deborah Blacker
  • R. Paul Maguire
  • H. Diana Rosas
  • Nikos Makris
  • Randy L. Gollub
  • Anders M. Dale
  • Bradford C. Dickerson
  • Bruce Fischl
چکیده

Automated MRI-derived measurements of in-vivo human brain volumes provide novel insights into normal and abnormal neuroanatomy, but little is known about measurement reliability. Here we assess the impact of image acquisition variables (scan session, MRI sequence, scanner upgrade, vendor and field strengths), FreeSurfer segmentation pre-processing variables (image averaging, B1 field inhomogeneity correction) and segmentation analysis variables (probabilistic atlas) on resultant image segmentation volumes from older (n=15, mean age 69.5) and younger (both n=5, mean ages 34 and 36.5) healthy subjects. The variability between hippocampal, thalamic, caudate, putamen, lateral ventricular and total intracranial volume measures across sessions on the same scanner on different days is less than 4.3% for the older group and less than 2.3% for the younger group. Within-scanner measurements are remarkably reliable across scan sessions, being minimally affected by averaging of multiple acquisitions, B1 correction, acquisition sequence (MPRAGE vs. multi-echo-FLASH), major scanner upgrades (Sonata-Avanto, Trio-TrioTIM), and segmentation atlas (MPRAGE or multi-echo-FLASH). Volume measurements across platforms (Siemens Sonata vs. GE Signa) and field strengths (1.5 T vs. 3 T) result in a volume difference bias but with a comparable variance as that measured within-scanner, implying that multi-site studies may not necessarily require a much larger sample to detect a specific effect. These results suggest that volumes derived from automated segmentation of T1-weighted structural images are reliable measures within the same scanner platform, even after upgrades; however, combining data across platform and across field-strength introduces a bias that should be considered in the design of multi-site studies, such as clinical drug trials. The results derived from the young groups (scanner upgrade effects and B1 inhomogeneity correction effects) should be considered as preliminary and in need for further validation with a larger dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scan-rescan reliability of subcortical brain volumes derived from automated segmentation.

Large-scale longitudinal studies of regional brain volume require reliable quantification using automated segmentation and labeling. However, repeated MR scanning of the same subject, even if using the same scanner and acquisition parameters, does not result in identical images due to small changes in image orientation, changes in prescan parameters, and magnetic field instability. These differ...

متن کامل

Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer.

In vivo MRI-derived measurements of human cerebral cortex thickness are providing novel insights into normal and abnormal neuroanatomy, but little is known about their reliability. We investigated how the reliability of cortical thickness measurements is affected by MRI instrument-related factors, including scanner field strength, manufacturer, upgrade and pulse sequence. Several data processin...

متن کامل

Detection of cortical thickness correlates of cognitive performance: Reliability across MRI scan sessions, scanners, and field strengths

In normal humans, relationships between cognitive test performance and cortical structure have received little study, in part, because of the paucity of tools for measuring cortical structure. Computational morphometric methods have recently been developed that enable the measurement of cortical thickness from MRI data, but little data exist on their reliability. We undertook this study to eval...

متن کامل

MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast

Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the b...

متن کامل

Combining atlas-based parcellation of regional brain data acquired across scanners at 1.5 T and 3.0 T field strengths

Longitudinal brain morphometric studies designed for data acquisition at a single MRI field strength can be seriously limited by system replacements from lower to higher field strength. Merging data across field strengths has not been endorsed for a variety of reasons, yet the ability to combine such data would broaden longitudinal investigations. To determine whether structural T1-weighted MRI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 46 1  شماره 

صفحات  -

تاریخ انتشار 2009